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Topic:

In the 1980s, the Slovenian computer industry was blooming. One of the computers
being produced at that time was the Partner from Iskra Delta. Not many were
produced; still, one is preserved at the Faculty of Computer and Information Science
of the University of Ljubljana. Its continued use and exposure may eventually render
it non-operational, so it is necessary to take measures to properly preserve it.

For this thesis, archive the Partner's software, including the corresponding
documentation, then, through reverse engineering, study its architecture and
software. From the resulting ndings, develop an emulator of the computer that will
recreate its behavior as faithfully as possible. The nal product should be available
to use on a regular PC with minimal effort.
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Glossary of acronyms

• ASCII · American standard code for information interchange
• AVDC · advanced video display controller
• BCD · binary-coded decimal
• BDOS · basic disk operating system
• BIOS · basic input/output system
• CCP · console command processor
• CTC · counter/timer channels
• DCGG · display character and graphics generator
• DMA · direct memory access
• DRAM · dynamic random access memory
• EPROM · erasable programmable read-only memory
• GDP · graphic display processor
• ISR · interrupt service routine
• PIO · parallel input/output
• RAM · random access memory
• ROM · read-only memory
• SIO · serial input/output
• TPA · transient program area
• VAC · video attributes controller
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Title: Emulation of the Iskra Delta Partner computer

Author: Matej Horvat

This thesis presents the development process of a program that emulates a Partner
computer, which was produced by the Slovenian/Yugoslav company Iskra Delta in
the 1980s. It describes its main components and how they are emulated, as well as
its system software and the methods and processes used to archive it.
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Chapter 1  

Introduction

In the 1980s, the Slovene/Yugoslav company Iskra Delta produced desktop
computers (microcomputers) as well as larger computers (minicomputers) intended
for business use and software for them [14]. Compared to home computers of the
time, relatively few people used it; consequently, it is hard to nd these computers
and information about them today.

The Partner is one of those computers. It is a desktop computer rst introduced in
1983 [17] and intended to be used as a small business or development system
[14]. Models capable of displaying graphics were introduced later: the 1F/G (with
one oppy disk drive), the 2F/G (with two oppy disk drives), and the WF/G (with a
hard disk and one oppy disk drive – shown on picture 1.1) [1]. (They are also
referred to as the Partner GDP. We are not sure when exactly these models were
introduced; the preliminary edition of the user manual is from March 1987 [1], while
some applications for them are dated 1985 or 1986.)

As hardware does not have an innite lifespan, at some point in the future it will no
longer be possible to see and use these computers and their software, and it will be
increasingly difcult to nd people who know anything about them. A part of
Slovenian history would disappear.

Preserving hardware is complicated, but preserving software is relatively easy. This is
made possible by a program called an emulator. It lets software to be executed on
other hardware than it was originally developed for.

To emulate means to implement the interface and functionality of some system on a
system with a different interface and functionality [13]. If we apply this denition
to an entire computer system, such as the Partner, it means that we implement the
Partner's interface (the instruction set of its central processing unit) and
functionality (input/output devices) on some other (modern) computer so that
software developed for the Partner can be executed on a modern computer.
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 Picture 1.1: The Partner WF/G used for this diploma thesis.

An emulator is a kind of a virtual machine. Virtual machines allow executing the same
code on different architectures and operating systems without having to adapt it
specically. The code is not necessarily the machine code of some physical
processor; several programming languages are compiled to virtual machine code
(usually called bytecode) that is then interpreted or recompiled [13]. The term
"emulator", however, is usually used for virtual machines that recreate physical
machines – including input/output devices. Emulators are whole-system virtual
machines [13].

An emulator works by executing the machine code of the "guest" program just as it
would be executed by the processor in the original computer, and when that virtual
processor attempts to access hardware, the emulator responds the same way (or
as similarly as possible) as the original hardware would. The program therefore does
not "know" it is not being executed in its native environment. If, for example, the
user presses a key on the keyboard, the program will react to it the same way as it
would on the original hardware, and if it attempts to render a picture or text on the
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screen, the user will see the same result as on the original hardware – in this case,
an actual Partner computer.

In this diploma thesis, we will take a look at the development of PartEm, a program
that emulates a Partner computer, specically the WF/G model.

In the second chapter, some of the main characteristics of the Partner's hardware
and software are presented, and then the procedures used to transfer the Partner's
software to a modern computer so that we could even begin developing the
emulator.

In the third chapter, the development process of the emulator is presented, as well
as its structure, what other components the Partner contains, how they work, and
how they are emulated.

In the fourth chapter, we take a look at the nal product, compare it to an actual
Partner, and present ideas for improvement.
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Chapter 2  

Archiving

An emulator is useless without any software to execute. In any case, we wanted to
archive everything we had at hand:

• the Partner user manual (archived by scanning; it contained a lot of crucial
information about how the Partner functions),

• a bootable oppy disk,
• the Partner's hard disk,
• the Partner's ROM.

The contents of the hard disk in particular seemed useful, as we would be able to
compare the accuracy of the emulator to the actual Partner in real time. (Later, we
also discovered it contained some documentation and source code; both were
helpful.)

These procedures we done in parallel with reverse engineering. In particular, making
an image of the hard disk contents and dumping the ROM required some knowledge
about the Partner's processor, memory, operating system, and input/output
devices, so we will describe those in this chapter as well, but how they are emulated
will be described in the next chapter.

2.1  The central processing unit

The Partner's central processing unit is a Zilog Z80A microprocessor clocked at 4
MHz [1]. The Z80 is an 8-bit microprocessor introduced by the American company
Zilog in 1976 [15]. Its instruction set is a superset of that of Intel's 8080A
microprocessor [16]. The Z80A is a somewhat newer version capable of operating
at higher clock speeds.

The processor has two sets of eight 16-bit registers or four pairs of 8-bit registers
that can be used independently [15, 16]:

• AF or A and F. A is the accumulator; it is used as the implicit input and/or output
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operand for most arithmetic operations. F is the ag register; it is modied
implicitly by arithmetic operations and used mostly for conditional jumps.

• BC or B and C. These are general-purpose registers, but have a special meaning for
some instructions; for example, B is the implicit operand of the DJNZ (decrement
and jump if not zero) instruction, which is frequently used to implement loops
whose iteration count is known in advance, and BC serves as the counter for the
LDIR (load, increment, repeat) instruction and other block instructions.

• DE or D and E.
• HL or H and L. HL is mostly used as a pointer.

The AF register pair is exchanged with its equivalent in the other register set with
the EX AF, AF' instructions, and the other three pairs all at once with the EXX
instruction. Within the same register set, DE and HL can also be exchanged with the
EX DE, HL instruction.

The following 16-bit registers are not duplicated:

• PC, the program counter, which is not directly accessible,
• SP, the stack pointer,
• IX and IY, which are index registers used as the base address in addressing modes

with a signed 8-bit displacement.

The processor has a 16-bit memory address space occupied by ROM and RAM and an
8-bit input/output address space occupied by devices.

Interrupts can be handled in three modes. All of them rst push PC to the stack, but
they differ in what they set it to next [15, 16]:

• In interrupt mode 0, the processor fetches an intruction from the data bus. This is
usually an RST instruction, which sets PC to a value between 0 and 38h.

• In interrupt mode 1, PC is always set to 38h. Software must then poll devices to
gure out which one caused the interrupt.

• In interrupt mode 2, the low 8 bits of an address are read from the data bus while
the high 8 bits are copied from the special register I. The word at that address is
then copied to PC. Because each device puts a different value on the bus,
execution automatically continues in its ISR. This interrupt mode is used in the
Partner; its user manual contains the addresses of pointers to ISRs relative to the
I register [1].
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2.2  The operating system

The Partner uses CP/M 3 (also called CP/M Plus), developed by the American
company Digital Research, as its operating system.

CP/M is a single-tasking disk operating system for microcomputers based on the
Intel 8080 microprocessor or compatible (such as the Zilog Z80). It provides
functions for working with les and basic input/output functions [11].

It is made up of two parts. The BIOS is the part that differs depending on the
computer and is supplied by its manufacturer (in this case Iskra Delta). Its functions
are called by the BDOS, which is hardware-independent and implements higher-level
functions. It, in turn, is called by applications [11].

In addition to all the functions required by CP/M, the Partner's BIOS also contains a
function for drawing graphics primitives [1]. This function exists only on the Partner
and only on Partner GDP models. It is used by applications so they do not have to
directly control the GDP.

Additionally, CP/M also contains a command interpreter (CCP) for starting programs
and working with les, as well as other programs. They (including the CCP) are not
permanently loaded, butu are loaded to the same area as other applications [11].

2.3  Working memory (RAM)

The Partner has 112 kilobytes of working memory (RAM). Because the processor has
only a 16-bit address bus and can therefore address only 64 kilobytes, the memory
address space is divided into two parts. The lower 48 kilobytes are occupied by the
currently selected bank, while the upper 16 kilobytes are always accessible and
belong to neither bank.

CP/M uses the rst bank for itself. The other is available to applications; in CP/M
terminology, the application space is called the TPA [11]). The upper 16 kilobytes
are also reserved for the operating system; they contain ISRs and entry points to
various operating system functions, most of which reside in the rst bank.
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2.4  Imaging the bootable oppy disk

In addition to the Partner and its user manual, we also had a bootable oppy disk at
hand. We wanted to archive its contents as it could be useful for testing the
emulator until we had a hard disk image.

The Partner uses high-density 5.25-inch oppy disks. The formatting is unique, so
they cannot be read by e.g. a PC AT clone because of the different controller. The
formatting is [1]:

• double-sided,
• 73 tracks per side,
• 18 sectors per track,
• 256 bytes per sector,
• sectors are interleaved in a 2:1 ratio (but the BIOS hides that detail),
• the total capacity is 657 kilobytes.

We used a KryoFlux [4] controller for imaging. This controller connects to a modern
computer over a USB port and can read the "raw" data encoded on the disk. The
decoding is done by software; we used the program HxCFloppyEmulator (meant to
be used with the oppy disk drive emulator of the same name, which works like a
oppy disk drive but uses a USB mass storage device or SD card as media) [8]. This
way, we obtained a sector-by-sector image that can be analyzed and used by the
emulator. It is a le that contains one byte for each byte of each sector on the disk
(without interleaving). The software or person working with such an image must
know its "dimensions" in advance, but in most cases, this is not necessary, because
le systems abstract media as an array of equally sized blocks.

We started developing the emulator by analyzing the operating system loader on the
disk and tried to "get it as far as possible" – ideally to the point where the
operating system is fully loaded. Later, however, through a more detailed analysis,
we found out that the disk is meant to boot an older (non-GDP) Partner model (we
could not actually try booting our Partner from the disk because its oppy disk drive
was not operational, so we did not know that immediately). However, soon later we
made an image of the hard disk, so we continued development with that instead.
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2.5  Imaging the hard disk

The WF/G model contains a Seagate ST-412 hard disk with a capacity of
approximately 10 megabytes [1]. The one in our Partner was fortunately still
awless and contained a lot of software and other useful les (such as a le
containing documentation about the hard disk itself and its controller, and the
source code for one of the installed applications), so we wanted to make a copy of
its contents. (We can only guess how much longer it will remain operational.)

Simply copying all the les (e.g. to oppy disks) would not be sufcient because:

• we could not copy the operating system loader this way; it is not stored in a le,
but in a special area occupying the rst few sectors of the disk,

• this would not preserve potential deleted les, which are not visible to the
operating system anymore, but whose fragments may still remain on sectors that
were not reused for some other le,

• we would have to reconstruct the le system for the data to be usable by the
emulator; just like the physical computer, the emulator knows nothing about les,
but only has a (virtual) disk, which is a collection of sectors whose meaning is
determined by the operating system.

The oppy disk drive in our Partner turned out to be non-operational anyway and we
did not want to disassemble the computer out of fear of damaging it, or at least
not without already having made a copy of the data on the hard disk.

We therefore had to nd a way to transfer the entire contents of the hard disk
(from the rst sector to the last) to a modern computer without using oppy disks,
and, if possible, without writing any new data to the disk, as that might overwrite
fragments of deleted les. By coincidence, we found a le on the disk that
contained a lot of information about it and its controller; for us, the most crucial
was the capacity: 1224 tracks, 32 sectors per track, 256 bytes per sector.

All Partners, regardless of the hardware conguration, have at least one serial
(RS-232) port, so we tried to nd a way to use it for data transfer. At rst, we did
not even know whether it worked; each time we tried to redirect the output of
some program to the serial port (instead of the screen) as specied by the manual,
the Partner stopped responding and the computer on the other side received no
data regardless of how we congured the serial ports on both sides.
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Then we found the program GRMT20 on the hard disk, which was also mentioned in
the manual (under the name RMT20 – the actual program identies itself as "RMT
2.0") as letting the Partner be used as a terminal for some remote computer. We
were able to send data with this program; if we typed something on the Partner's
keyboard, we saw that on the other computer, but not vice versa. (What also
surprised us was that the speed was double of what we specied. The BIOS offers
the choice of 1200, 2400, or 4800 bits per second, but in practice, this turned out
to be 2400, 4800, or 9600 bits per second. The manual is not consistent regarding
the allowed speeds.) But it was already enough for our needs.

The manual listed the input/output port addresses used by the serial port. The
keyboard is also connected to a serial port, but uses a different connector [1]. By
analyzing the code on the bootable oppy disk that communicates with the
keyboard, we found out how to send data through the serial port. We also
discovered that if we forcibly terminate GRMT20 (by pressing the SHIFT and BRK
keys; on the Partner, this terminates the currently executing program and loads the
CCP), the serial port remains usable for our own code to send data through.

With this knowledge, we were able to write a program in the BASIC programming
language on the Partner, that – by calling routines written in assembly language –
read each sector of the hard disk and sent it through the serial port:

10 DEFINT A-Z 'All variables are integers.
20 A = &H7000 'Starting address for machine code.
30 DEF USR0 = A 'Entry point to SETDMA.
31 DEF USR1 = A + 2 'Entry point to SETTRK.
32 DEF USR2 = A + 4 'Entry point to SETSEC.
33 DEF USR3 = A + 6 'Entry point to READ.
34 DEF USR4 = A + 8 'Entry point to SendSec.
39 I = A
40 READ B 'Read a byte from a DATA statement.
50 IF B = -1 THEN GOTO 90
60 POKE I, B 'Write it to memory.
70 I = I + 1
80 GOTO 40
90 Z = USR0(0) 'Call SETDMA.
100 FOR T = 0 TO 1223 'Track counter.
110 POKE A + 10, T AND 255
115 POKE A + 11, T \ 256
120 Z = USR1(0) 'Call SETTRK.
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130 FOR S = 1 TO 32 'Sector counter.
140 POKE A + 10, S
145 POKE A + 11, 0
150 Z = USR2(0) 'Call SETSEC.
160 PRINT "Track"; T; "sector"; S
170 Z = USR3(0) 'Call READ.
180 IF PEEK(A + 10) = 0 THEN GOTO 210
190 PRINT "Read error!"
200 END
210 Z = USR4(0) 'Call SendSec.
220 NEXT S
230 NEXT T

Lines 30 to 34 dene the entry points to machine code routines. Each of them
points to a JR (relative jump) instruction because that made xing bugs easier.

Lines 39 to 80 read data from DATA statements, which contain machine code (more
about them later). and write them to addresses starting with 7000h.

Line 90 calls the machine code routine SETDMA, which calls the BIOS function of the
same name and passes it the address of the buffer that we will use for reading
sectors. Then the program enters the loop that iterates over tracks and sectors
(the documentation on the hard disk told us how many of them there are).

Inside the loop, we set the track number and then for each sector in the track, we
set that sector number, read it (if this fails, we display an error), and send it.

We implmented the code to read and send a sector in assembly language, because
BASIC cannot access the disk on the sector level (we could have actually
implemented everything in assembly language, but it would have made debugging
harder):

 org 7000h
 jr SETDMA ; 7000h
 jr SETTRK ; 7002h
 jr SETSEC ; 7004h
 jr READ ; 7006h
 jr SendSec ; 7008h
Param dw 0 ; 700Ah (placeholder for parameters)
SETDMA ld a, 12 ; SETDMA (set…
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 ld bc, Buffer ; … the sector buffer address)
 jr BIOS
SETTRK ld a, 10 ; SETTRK (set the track)
 jr BCBIOS
SETSEC ld a, 11 ; SETSEC (set the sector)
BCBIOS ld bc, (Param)
BIOS ld (.par), a ; (BIOS function number)
 ld (.par+2), bc ; Pass the parameter.
 ld c, 50 ; (BDOS function "use the BIOS")
 ld de, .par
 jp 5 ; Call the BDOS and don't return.
.par db 0, 0, 0, 0 ; (placeholder for parameters)
READ ld a, 13 ; READ (reads a sector)
 call BIOS
 ld (Param), a ; Report success or failure.
 ret
SendSec ld hl, Buffer
 ld b, 0 ; (256 inner loop iterations)
 ld c, b ; Checksum := 0.
.next ld a, (hl) ; Read a byte from the buffer…
 call SendByte ; … and send it.
 add a, c ; Add to checksum.
 ld c, a
 inc hl
 djnz .next
 ld a, c ; Send checksum.
SendByte push bc
 ld b, 3 ; (iteration count)
.again push af
.wait in a, (0DBh)
 and 4 ; (ready ag)
 jr z, .wait ; Wait until the SIO is ready.
 pop af
 out (0DAh), a ; Send the byte to the LPT port.
 djnz .again
 pop bc
 ret
Buffer ; (buffer starts here)

Most routines only call BIOS functions. This is done by setting the A register to the
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function number [7] and calling or jumping to (in case no further action is needed –
if we change a CALL/RET sequence to JR, we save two bytes and decrease the time
needed to type in the program) the BIOS or BCBIOS routine (the latter also reads a
parameter from the address 700Ah). In any case, the BIOS function call is done
through a BDOS function, which must be passed the BIOS function number and
parameters in a specic structure. This is because applications cannot call BIOS
functions directly as they reside in the other bank [8]. BDOS functions are called
through the address 5; the jump to the BDOS entry point (which may differ
depending on the computer and CP/M version, so address 5 is the documented
entry point [8]) is there.

Ideally, we would have used an existing protocol to transfer the data, such as
XMODEM, which is simple and widely supported among terminal emulation
applications, but it requires the receiver to check the checksum of each packet and
notify the sender if an error is detected (as well as to request the next packet).
Since we could not receive any data on the Partner, we instead used our own slower
protocol, which sent each byte of each sector three times, calculated a checksum,
and sent that three times as well. On the receiving computer, we wrote a program
to decode this format by "voting" (if at least two bytes out of three match, then
that value is used, otherwise there was an error). Sending the entire hard disk
contents this way took an entire day (in reality even more due to debugging). It
would have been possible to do this faster, but we did not want to take any risks.

Sending a sector (each is 256 bytes long) is done by iterating through the buffer
and calling a byte-sending routine for each byte, which sends it three times. The
value is also added to a checksum and the checksum is nally also sent three times.

Sending a single byte through the serial port is done by writing to its data address
(0DAh), but it is rst necessary to wait until the SIO is ready for that. This is done
by checking the "ready" ag, read from the status address (0DBh), in a loop.

We wrote and assembled the assembly language code on a modern computer and
then typed it into the Partner in the form of DATA statements, which are used in
the BASIC programming language for pre-made data:

240 DATA 24, 10, 24, 15, 24, 17, 24, 40
250 DATA 24, 47, 0, 0, 62, 12, 1, 90
260 DATA 112, 24, 10, 62, 10, 24, 2, 62
270 DATA 11, 237, 75, 10, 112, 50, 44, 112
280 DATA 237, 67, 46, 112, 14, 50, 17, 44
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290 DATA 112, 195, 5, 0, 0, 0, 0, 0
300 DATA 62, 13, 205, 29, 112, 50, 10, 112
310 DATA 201, 33, 90, 112, 6, 0, 72, 126
320 DATA 205, 73, 112, 129, 79, 35, 16, 247
330 DATA 121, 197, 6, 3, 245, 219, 219, 230
340 DATA 4, 40, 250, 241, 211, 218, 16, 244
350 DATA 193, 201, –1

Once the hard disk data was transferred and decoded, we were able to use it in the
emulator. We also wrote a program to extract all the les from it (for easier use
with modern software), including deleted les – this was only possible if the space
formerly reserved for those les was not reused for newer les. We found some
les by heuristically searching unused le system blocks (those that were not
pointed to by any directory entry). Among the deleted les were some applications,
source code, and documentation.

2.6  Dumping the ROM

The ROM (actually an EPROM [1]) contains the initial loader, that, when the
computer is powered up or reset, checks whether the RAM is working correctly and
loads the operating system loader from a oppy disk or hard disk. The latter is
stored on the rst few sectors of the storage device and loads the operating
system.

At reset, the ROM is enabled (made accessible) and occupies the lowest 8 kilobytes
of the memory address space regardless of the selected bank. It is disabled by
accessing input/output port 80h (the addresses it occupied are then used by RAM),
but cannot be re-enabled without resetting the whole computer.

We assumed it is disabled by the operating system or its loader. This assumption
was not wrong, because while looking at the loader on the bootable oppy disk, we
noticed that it disables the ROM immediately at the start of its execution, but on
the hard disk, the ROM is disabled by the BIOS once the latter is loaded. In any case,
the result is the same; by the point the operating system is loaded and capable of
executing programs, it is too late to dump (make an image of) the ROM.

We therefore concluded that the only way to dump it is to not load the operating
system, but instead a program that will read the ROM and send it through the serial
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port. As we did not want to lock ourselves out of the operating system, only one
option remained: to replace the oppy disk drive and make our own bootable oppy
disk containing this program. (We did not have an EPROM programmer/reader and
removing the EPROM from its socket would have required an almost complete
disassembly of the computer.)

Our rst attempt failed because the Partner did not recognize the disk as bootable,
so we made a copy of the bootable oppy disk and overwrote part of the operating
system loader with our program, which dumped the entire memory address space
(because we did not know which exact addresses are occupied by the ROM) through
the serial port the same way as the hard disk imaging program. To initialize the
serial port, we started the GRMT20 program, then reset the Partner with the switch
on the back side.

Most of the resulting dump was "empty" – it contained the pattern "55 AA"
(hexadecimal), which is the result of the memory test. Some of it contained data
from before the reset. The ROM seemed to be absent (we would have recognized it
by any of the messages it displays on the screen), but we did notice the following
code fragment:

F600 in a, (80h)
F602 ld hl, 0E000h
F605 ld de, 100h
F608 ld bc, 1600h
F60B ldir
F60D jp 100h

This fragment disables the ROM by reading input/output port 80h, then copies
1600h bytes from address 0E000h to 100h and jumps there. We knew that the
operating system loader, once loaded, starts at this location, so we concluded that
the ROM loads the loader to address 0E000h and the above code fragment to
address 0F600h and executes the latter. It cannot load it to address 100h directly;
the processor starts executing code from address 0 on reset, so the ROM must
start at that address, and the Partner manual says it is 4 kilobytes in size [1], so
address 100h is denitely in the ROM.

We then noticed that this code fragment is present on the bootable oppy disk and
hard disk at the same location. We concluded that this is the actual entry point to
the loader. We moved our dumping program to that location (overwriting the
instruction that disables the ROM) and ran it again. The new dump also contained
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the ROM. The following is the nal version of the program:

 org 0F600h
Start di ; Disable interrupts.
 ld sp, 0FF00h ; SP := top of our space.
 call Beep ; Notify the user that we booted.
 call SendBank ; The first bank is initally active.
 ld d, 40h ; (16 kilobytes)
 ld hl, 0E000h ; (start of the shared area)
 call SendArea ; Send the shared area.
 in a, (90h) ; Select the second bank…
 call SendBank ; … and send it.
 call Beep ; Notify the user that we are done.
 halt ; Halt the processor until reset.
SendBank ld d, 0C0h ; (48 kilobytes)
 ld h, 0
 ld l, h ; HL := 0.
SendArea call SendSec ; Send a "sector" with a checksum.
 dec d ; Repeat this D times.
 jr nz, SendArea
 ret
Beep in a, (0D9h)
 and 4 ; (ready ag)
 jr z, Beep
 out (0D8h), a ; (A is now 4, which also causes a long beep)
 ret

Note: the routines SendSec and SendByte are the same as in the previous program.

We only found a replacement oppy disk drive a few months after the start of the
project; all drives we tried before it either did not work or were not compatible with
the Partner. Therefore, the emulator initially loaded the operating system loader by
itself into RAM at address 100h and also initialized the hardware. The ROM is
therefore not strictly needed, but we wanted to archive it and use it in the emulator
for authenticity because it shows a large banner "Delta Partner GDP" at startup. It is
shown on picture 2.1.
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Picture 2.1: The text shown by the ROM at startup.
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Chapter 3  

The emulator

This chapter describes the other components of the Partner and their
implementation in the emulator.

3.1  Development process

The development was an iterative process. Once we had an image of the bootable
oppy disk and hard disk, our rst goal was to get the emulator to the point where
it could load the operating system (CP/M).

While doing so, we analyzed its loader, the source code for which is publicly avaliable
[10]. At rst, we only emulated hardware as much as needed to get the loading and
initialization process as far as possible; for example, if some part of the code had a
loop waiting for some device to become ready, we simply returned a result that
"satised" it. We avoided emulating the oppy disk drive controller and hard disk
controller completely by intercepting BIOS functions.

After about a month of work, during which we also analyzed the bootable oppy disk
image, performed experiments on the actual Partner (to nd out how the hardware
works), and researching how to image the hard disk, our emulator came to a point
where it could load the operating system. From that point on, our goal was to
emulate all of the Partner's components as accurately as possible.

We obtained some information about the hardware from the Partner's manual
(without it, developing the emulator would have been impossible), and in the case
of the video board, from datasheets for the relevant chips. Everything else had to
be discovered empirically: to nd out how some piece of hardware works, we usually
made a hypothesis and then wrote a short program in the BASIC programming
language to verify it. We noted the results and implemented the same or similar
behavior in the emulator. If the documentation was too vague, it was often helpful
to run a program in the emulator and observe how it communicates with the
hardware and what data it expects from it. Only for the mouse we were able to use
the source code of an application as a reference and so implemented a device that
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we did not have and otherwise could not have emulated.

3.2  General structure

Hardware (the digital logic circuits within) works in parallel and synchronizes and
controls its behavior with various control signals. The code implementing some
program (in our case the emulator), on the other hand, is executed sequentially. As
mentioned in the introduction, it is most natural to look at the emulator from the
processor's perspective. The processors execues code, and when it has to perform
an input/output operation, it does that and then continues code execution. At the
highest level is therefore such a loop. Devices used by humans to interact with the
computer (keyboard, mouse, monitor) require special treatment. We will rst look at
the monitor.

On an actual Partner, the picture on the screen is refreshed while the processor is
executing code, but in the emulator, for simplicity, the code execution and screen
refreshing take turns. In each iteration of the main loop, 80000 processor cycles
(the result of dividing the clock speed, 4 MHz, with the screen refresh rate, 50 Hz)
are emulated, then the screen is refreshed if its contents have changed since the
last refresh. Pending interrupts are also triggered at that time. The emulator then
waits 20 ms (1/50 s) or less (depending on how long it took to refresh the screen)
and the loop repeats. As a side effect, the emulated processor executes
approximately the same number of instructions in a given time interval as the one in
the actual Partner (approximately, not exactly, because wait states required by the
working memory, which is DRAM, are not taken into account).

In the same loop, the emulator also checks whether a key was pressed on the
keyboard, whether a mouse button was pressed or released, and whether the
mouse was moved. It passes these events to the appropriate module which
processes the event and updates the state of the device. The software running in
the emulator will see the new state the next time it will read it. In the case of the
keyboard, an interrupt is also red to notify the software about the keystroke.

3.3  The central processing unit

To emulate the processor, a somewhat modied (for portability) version of the
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Zymosis [5] library is used. The library accurately emulates the Z80 processor,
including undocumented instructions and other details.

The emulated processor accesses other devices through callback functions. When it
needs to access memory or a device, it calls the given function to perform the read
or write operation. Memory (ROM and RAM) is taken care of by a pair of functions,
while for devices, the read or write request is redirected to the module
implementing that device. Each device implements at least the following functions:

• A reset function, which is called at the start of emulation and each time the
emulated computer is reset.

• A function for reading data, which takes an address and returns a value.
• A function for writing data, which takes an address and a value. On most devices it

also triggers side effects.

Devices can also trigger interrupts. Because of the different nature of each device,
there is no universal mechanism for this.

3.4  Memory

In the emulator, memory (ROM as well as RAM) is just an array of bytes accessed by
the emulated processor through callbacks. On each access, the address is
translated from the emulated processor's address space into the host's address
space and then the read or write operation is performed.

3.5  The video board

The picture displayed on the screen is generated by two chips. In general, one
generates text and the other generates graphics.

The monitor built into the Partner is monochrome and green. Some congurations of
the Partner can also output the picture to a television screen [1]. Ours does not
have this option, so the emulator displays the picture as it would be seen on the
built-in monitor.
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3.5.1  AVDC

The AVDC (a Signetics SCN2674) generates the control signals for the screen and
displays text.

Depending on how it is connected to the rest of the system, it can be used in
several modes [2]. The Partner uses it in the so-called independent mode, in which
the AVDC has its own memory that the main processor cannot access directly, but
only by issuing commands.

The memory is divided into two parts, each 4 kilobytes in size. One contains
character codes and the other contains their attributes [1]. Read and write
operations always affect both.

The following are some of the commands:

• select an initialization register,
• enable or disable the cursor,
• enable or disable interrupts,
• write a character and attribute to the cursor position,
• advance the cursor position,
• ll a block of characters and attributes.

The parameters of the picture generated by the AVDC are set through 15
initialization registers. They are all set through the same input/output port and
selected by issuing the appropriate command. Setting a register automatically
selects the next one, so software usually sets all at once (and then leaves them
unchanged). The following are some of the parameters that can be set:

• Mode of operation. On the Partner, this is always the independent mode.
• Character dimensions. On the Partner, this is always 8×11 [1].
• The duration of various intervals used to control the screen.
• Whether the cursor blinks, and if it does, how often.
• The blinking frequency for characters that have the blink attribute set.
• Number of character columns per row. On the Partner, the user can choose 80 or

132 columns.
• Number of character rows. On the Partner, this is always 26.
• The cursor height.
• Which line of a character is used for underlining if the underline attribute is set.
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There are also other registers with their own input/output ports, such as the cursor
address and registers that split the picture into multiple parts (the Partner's BIOS
does not use the latter).

When generating text, the AVDC can fetch character and attribute codes in two
modes:

• In linear mode, it reads them from a contiguous block of memory and displays
them in the same order (left to right, wrapping as necessary).

• In row table mode, the software reserves part of the memory for a table that
species the starting address of each row. The address of the table itself is held
in a register. To display each row, the AVDC rst reads an address from the table
and then fetches characters from the contiguous block of memory starting at the
address. This is the mode used by the Partner's BIOS because it has two
advantages: it is easy to implement scrolling (only the row addresses have to be
rotated) and it allows switching between 80-column and 132-column modes
without problems; the BIOS always organizes the rows in memory so that each is
132 characters long. In 80-column mode, the extra columns are simply ignored by
both the software and the AVDC. If the user switches to 132-column mode, all
the characters stay where they are, only the rows become longer.

The AVDC does not generate the picture all by itself; it also needs the DCGG and
VAC [2]. These two chips are not visible to the processor, so they do not have to
be emulated explicitly; all that matters is that the nal picture looks as it should.
The emulator implements their functionality in the same module as the AVDC. The
Partner's documentation does not mention these chips, but they are mentioned in
the AVDC's datasheet. Generating the picture works roughly like this:

1. The picture is made up of several rows of text and each row is made up of
multiple lines of pixels. Because rows are drawn top to bottom and each row left
to right, the AVDC reads characters belonging to the particular row in this order,
as well as their attributes. (Because each row of characters is made up of several
lines of pixels, it has to read each row from memory multiple times. In the
emulator, this is not true because the emulator cannot access the host's
hardware directly, but draws the full picture in memory and displays that.)

2. The character codes read by the AVDC are passed to the DCGG, which has its
own ROM containing glyphs (character shapes) shown on picture 3.1, and
(conceptually) produces a picture of 1-bit pixels.

3. The VAC receives the character attributes from the AVDC and determines the
colors of the pixels.
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Each character has one byte (8 bits) of attributes. The attributes are any
combination of those bits. They are:

• the blink bit,
• the underline bit,
• the intensity bit,
• three bits for the background color (on the Partner's monitor, they produce

different shades of green; it is not known what they would do on a television
screen),

• two bits whose meaning is not fully understood.

Each row can also be given an attribute causing its characters to be double-width or
double-width and double-height. In both cases, each character must be written to
the row twice; for example, the word "word" becomes "wwoorrdd" because the
AVDC still fetches characters the same way, only their left or right half is drawn
depending on whether the column number is even or odd. In the case of double
height, the next row must also contain the same characters and it must be explicitly
set which row is the upper half and which is the lower half. These attributes are set
by the high two bits of each address in the row table.

We of course wanted to use the same font to display the AVDC-generated picture
as on the actual Partner, but because the ROM containing the glyphs cannot be
accessed by the processor, the only way we could get it was by copying the glyphs
by hand. To make the individual pixels easier to see, we wrote a program that
showed all 256 characters in double width and height. Picture 3.1 shows the entire
character set. The Partner's BIOS, however, ignores the highest bit when displaying
a character, and which character the other 7 bits represent depends on the
currently selected character set (besides ASCII and "YUSCII" – the Yugoslav
character set – there are 11 more, of which 3 are undocumented). The BIOS also
interprets escape sequences; some of them select other character sets while others
set the attributes of subsequent characters, move the cursor, etc.

The manual also mentions the possibility of using custom characters, but we found
no documentation on how to do so (nor did we reverse engineer it) while developing
the initial version of the emulator.

The following code shows how to display a blinking letter "A" at the current cursor
position, which is then advanced:

.wait1 in a, (39h)
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 and 20h ; The AVDC ready ag…
 jr z, .wait1 ; … must be 1.
.wait2 in a, (36h)
 and 10h ; The AVDC memory access ag…
 jr nz, .wait2 ; … must be 0.
 ld a, 'A' ; Put the letter "A"…
 out (34h), a ; … into the character register.
 ld a, 1 ; Put the blink attribute…
 out (35h), a ; … into the attribute register.
 ld a, 0ABh ; "Write character at cursor and advance".
 out (39h), a ; Issue the command.

In addition to the aforementioned registers, the Partner also has a register
containing ags that affect the whole picture generated by the AVDC. These ags
are not fully documented, so we will only mention the ones implemented by the
emulator:

• A ag that stretches "lit" pixels by an additional pixel to the right. This makes
characters bolder, but the screen resolution remains the same. The BIOS sets this
ag in 80-column mode and clears it in 132-column mode, but both states (0 and
1) work in both modes. This is shown by picture 3.1.

• A ag that inverts (bitwise negates) the picture; bright pixels become dark and
vice versa.

• A ag that the emulator uses to distinguish between 80-column and 132-column
modes, but is otherwise not understood. In the latter mode, characters are
narrower.
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Picture 3.1: The character set in 80- and 132-column modes with and without stretching.

The emulator stores the AVDC's memory and registers in arrays. The picture is
drawn as on the actual AVDC (except that the processor is halted while drawing);
for each row, characters are read starting with the address specied in the row
table and for each column, a foreground color (the color of the actual character)
and background color (which lls the rest of the rectangular character cell) is
chosen. The character (or a half or a quarter of it, if the row is double-width or
double-height) is then drawn (scaled and stretched as needed) in the cell.

The AVDC can also trigger interrupts. The Partner's BIOS enables only the vertical
blanking interval interrupt. The emulator implements this interrupt, but not others,
such as the interrupt that can be triggered when the AVDC starts drawing the rst
line of pixels of each character row, or the interrupt triggered when a command is
processed.
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3.5.2  GDP

The GDP (a Thomson EF9367) is capable of displaying graphics as well as text.

To do so, it is provided with 128 kilobytes of DRAM [1] containing two so-called
pages of 1024×512 pixels. Each pixel is a single bit that can be "lit" or "dim".
Software can write to either page while the GDP displays the other (or the same)
page.

For better performance, a resolution of 1024×256 with non-square pixels (width to
height ratio of 1:2) can be chosen (however, there are still only two pages, not
four) and the so-called fast write mode can be used, in which screen refreshing is
suspended as it otherwise generates constant read operations, during which writing
is not possible.

The central processing unit does not have direct access to the framebuffer. It
triggers write operations by issuing commands, of which there are three kinds:

• Line-drawing commands. The GDP implements Bresenham's algorithm in hardware
[3]. To draw a line, the software simply sets the starting and ending point of the
line and issues a command.

• Text-drawing commands. The GDP contains a ROM containing glyphs for all ASCII
characters. Text-drawing commands copy these glyphs to the framebuffer and
become a part of the picture. Text can be drawn horizontally (left to right) or
vertically (bottom to top; the characters are rotated counter-clockwise by 90°).
Regardless of the orientation, the text can be upright or italic and can also be
scaled horizontally and vertically with independent integer factors from 1 to 16
[3]. (We could have copied the font in a similar way as the one used by the
AVDC/DCGG, but there was no need to because it is shown in the GDP's
datasheet.)

• Control commands for e.g. clearing the screen, switching between drawing mode
and erasing mode, etc.

Commands are issued by writing them to a dedicated input/output port. Reading
that port returns status ags. The most important ags are the ready ag and the
ag telling whether a screen refresh is in progress.

Erasing previously drawn lines and text is done by choosing an "eraser" instead of
the "pen" and then issuing the same sequence of drawing commands as used to
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draw them. (This method is not perfect if the elements being erased intersect with
other elements.)

The Partner implements another way: writing to the framebuffer can be done either
in "normal" mode (where bits are set if using the pen and cleared if using the
eraser) or in "XOR" mode, which applies a bitwise XOR operation to the bits (if using
the pen, the bits are negated, otherwise they are left unchanged).

By using a command that temporarily allows direct access to the framebuffer,
reading is also possible. The Partner allows reading a single pixel at a time. The
software sets the coordinates, issues the command, then reads the bit from a
special register implemented by the Partner's video board (not the GDP).

All other functionality is controlled through other registers, each of which has its
own address. The registers are also used to pass parameters to commands:

• The rst control register species whether the pen or eraser is selected, whether
drawing is enabled (if not, drawing commands have no effect except moving the
pen), whether fast write mode is enabled, whether cyclic screen mode is enabled
(if it is, the upper bits of coordinates are ignored so that the pen is never out of
bounds), and which interrupts are enabled.

• The second control register controls the text orientation and the line type (full,
dotted, dashed, or dot-dash).

• The character size register species the scaling factors used by character drawing
commands.

• The 8-bit ∆X and ∆Y registers specfy the difference in coordinates between the
starting and ending points of a line. They are unsigned; their signs are provided as
part of the line drawing command.

• The 16-bit X and Y registers specify the starting coordinates of the line or
character. The origin is in the lower left corner. These registers are automatically
updated after each drawing operation; when drawing a line, ∆X and ∆Y are
accumulated to them, and when drawing text, X or Y (depending on the text
orientation) is updated to contain the next character position.

• There are also registers returning the current position of the light pen, but the
Partner does not support one.

The Partner's video board has two additional registers affecting the operation of the
GDP. The rst species by how many lines the picture is scrolled down. The other
contains ags for:
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• which page is being displayed,
• which page is being drawn to,
• the drawing mode (normal or XOR),
• the resolution (1024×256 or 1024×512),
• the scroll mode; the lines scrolled out of the picture can either be displayed at the

top instead or those lines can be left empty.

The following code shows how to draw a line and some text – the result is shown on
picture 3.2:

 ld a, 18h ; Select high resolution.
 out (30h), a
 ld a, 6 ; Clear the screen, X := 0, Y := 0.
 call GDPCmd
 xor a ; A := 0; select horizontal upright characters.
 out (22h), a
 ld a, 43h ; Scaling factors: 4× in the X, 3× in the Y dimension.
 out (23h), a
 call Abc ; Print "Abc".
 call GDPWait
 ld a, 0Fh ; Vertical italic characters, line type "dot-dash".
 out (22h), a
 xor a
 out (29h), a ; Low 8 bits of X := 0.
 ld a, 100
 out (2Bh), a ; Low 8 bits of Y := 100.
 out (27h), a ; ∆Y := 100.
 ld a, 200
 out (25h), a ; ∆X := 200.
 ld a, 15h ; Draw a line; ∆X positive, ∆Y negative.
 call GDPCmd
 call GDPWait
 ld a, 20
 out (2Bh), a ; Low 8 bits of Y := 20.
 ld a, 34h ; Scaling factors: 3× in the X, 4× in the Y dimension.
 out (23h), a
Abc ld a, 'A'
 call GDPCmd
 ld a, 'b'
 call GDPCmd
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 ld a, 'c'
GDPCmd call GDPWait
 out (20h), a ; Issue a command.
 ret
GDPWait push af
.wait in a, (2Fh) ; (GDP status register)
 and 4 ; (ready ag)
 jr z, .wait
 pop af
 ret

Picture 3.2: An example of a line and text on the GDP.

An example of reading a pixel (X and Y registers must already be set, the GDPWait
routine is the same as above):

 call GDPWait ; If the GDP is executing a command, wait.
 ld a, 15 ; (direct framebuffer access command)
 out (20h), a ; Issue a GDP command.
 call GDPWait ; Wait until it is done.
 in a, (36h) ; Read the register containing the pixel…
 and 80h ; … in the highest bit.
 ret ; A is 0 if lit and 80h if dim.

Emulating the GDP is quite simple. When the command port is written to, the
command is interpreted and executed, and the other ports either read or set a
register. Drawing is done into an array where each pixel occupies one bit. When
refreshing the screen, the contents of the displayed page are drawn – for lit pixels
this means that the intensity of that pixel is increased by some constant value. This
overlays the GDP's picture on the AVDC's picture.

Rendering of the GDP's picture is skipped if fast write mode is enabled (which is not
any faster than otherwise in the emulator, but disables screen refreshing as on
actual hardware) or the page to display is empty. The latter is an optimization that
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speeds up screen refreshing in non-graphical (text-only) applications. Whether the
page is empty is kept track of by a per-page ag that is set when a "clear screen"
command is issued and cleared when any drawing command is issued.

3.5.3  Displaying the picture on the screen

The AVDC and GDP each generate their own picture. These pictures are independent
of each other. The emulator has to render the resulting frame combining both
pictures into an array of equally sized square pixels. The question of what is the
Partner's screen resolution is not easy to answer because:

• The AVDC generates (in theory) an arbitrarily-sized picture of 8×11-pixel
characters. The number of rows and columns is adjustable; the Partner's BIOS
uses only 80×26 and 132×26. This means 640×286 or 1056×286 pixels, where
in the rst case, pixels are also horizontally stretched. (The AVDC allows up to
128 rows and 256 columns; the emulator only supports the dimensions used by
the BIOS.)

• The GDP generates a picture of 1024×256 or 1024×512 pixels; the pixels are
only square in the latter case (the density is approximately 128 dots per inch in
either dimension). This picture is always overlaid on the AVDC's picture so that
intensities of overlapping pixels are summed.

If we take the maximum of each dimension, this gives us 1056×512, but in reality,
the picture generated by the AVDC is somewhat larger (approximately by one row's
height in each direction), meaning it must be scaled. This must be done without
affecting aesthetics and without too much computational overhead, as the screen
may have to be refreshed up to 50 times per second (for graphics, this is not a
problem, because the pixels are either square or doubled in height).

We settled on a resolution of 1056×572 or 1024×572 pixels, if the host's screen is
narrower than 1056 pixels. The scaling is done as follows:

• The height of the AVDC's picture is always doubled (hence the 572-pixel height).
• If the AVDC is displaying 80 columns, every other pixel is double-width; the

AVDC's picture is then 960 pixels wide, which is still narrower than the GDP's
picture, but most applications still look good enough. The picture is also centered
horizontally.

• If the AVDC is displaying 132 columns and the screen is narrower than 1056
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pixels, every fourth character is only 7 pixels wide instead of 8; the AVDC's
picture is then 1023 pixels wide.

• The GDP's picture is doubled in height if the 1024×256 resolution is selected,
otherwise it is not scaled. Either way, it is centered vertically because it is shorter
than the AVDC's picture.

• If the screen is wider than 1024 pixels, the GDP's picture is also centered
horizontally.

3.6  The serial interface

The Partner can have up to three serial ports conforming to the RS-232-C standard
in the form of a DB-25 connector [1]. (Ours only has one port, which is standard in
all congurations.) The keyboard is also attached to a serial port, but uses the DIN
5 connector.

The serial ports are controlled by two SIO controllers, each of which has two
channels [16]. Each channel occupies two input/output ports [1, 16]; they are
listed in table 3.1.

 Name Data Status Note
 CRT 0D8h 0D9h keyboard
 LPT 0DAh 0DBh present on all Partners
 VAX 0E0h 0E1h optional (along with MOD)
 MOD 0E2h 0E3h optional (along with VAX)

Table 3.1: Serial ports and their addresses.

In table 3.1, the rst column contains the name of the port as referred to in CP/M.
The second column is the data port; writing to it sends a character and reading
from it returns the pending character if one is available [16].

The third column is the port used for reading status information and changing
settings (e.g. the transfer speed). Multiple registers of the serial communications
controller are accessible over this port [16]. The BIOS always leaves the status
register selected after (re-)initializing the ports. Most applications only read from it,
so the emulator implements only two bits of the status register that are necessary
for applications to send and receive data; bit 2 tells whether the controller is ready
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to accept a character to be sent, and bit 0 tells whether a character has been
received (and not read yet from the data port). Other than that, the emulator does
not implement any serial port functionality, but it does emulate certain devices that
may be connected to it.

The BIOS checks the presence of the VAX and MOD ports (or rather the SIO
controlling them) by setting one of their registers and reading it back. If it receives
the expected result, it assumes that both ports are present.

The rutine SendByte in the hard disk imaging program shows how to send data over
a serial port. Synchronous reading is done in the same way, except bit 0 of the
status register has to be polled rst.

3.7  The keyboard

The Partner's keyboard is connected to a serial port with the DIN 5 connector. It
communicates with the computer at a speed of 300 bits per second [1]. It was
produced by the company Gorenje.

In addition to alphanumerical keys and the numeric keypad, it has a few special keys
that are not present on today's standard (PC) keyboards; they are shown on picture
3.3. The emulator maps those keys to PC keys in the closest positions.
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Picture 3.3: The Partner's keyboard.

It also differs from a PC keyboard in that it is "independent". The scancodes
produced by some keys vary depending on the state of SHIFT, CTL, and CAPS keys,
and the latter do not produce any scancoedes themselves. The computer therefore
cannot detect these keys being pressed or released, nor does it distinguish between
e.g. the combination SHIFT+A and the A key being struck while CAPS is pressed.
Each key press (but not release) triggers an interrupt to which the BIOS responds
by reading the serial port's data port. If a key is pressed for a longer time, the same
scancode is sent multiple times; the repeating is therefore implemented by the
keyboard, not the computer. The scancodes are in most cases identical to the ASCII
characters they represent, so software does not have to translate all of them, only
those produced by function keys.

The keyboard also has eight LEDs (labeled, in Slovene, "SYSTEM", "LOCAL", "KEYB.
LOCK.", and "L1" to "L5"; the meaning is not explained in the manual, but normally
only the "SYSTEM" light is lit) and a buzzer that can produce a short or a long beep.
Both the LEDs and the buzzer are controlled by software by sending 8-bit values:

• If the lowest two bits are "10", a short beep sounds, and if the lowest three bits
are "100", a long beep sounds.

• Independently of this, the state of the LEDs also changes. Even though there are
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eight of them, they are not simply mapped to the 8 bits of the value: if the
lowest two bits are "00", the value is rst decremented by 2, and if they are
"10" or "11", the value is decremented by 1 – otherwise it is not modied. Only
then are the LEDs set according to the values of the individual bits, where the
lowest bit controls the leftmost LED ("SYSTEM") and the highest bit controls the
rightmost LED ("L5").

Some values affect the behavior of the keyboard. The user can do so with the Set
up program built into the BIOS, which can be brought up at any time with the SET
UP key. (This is also where the user can switch the AVDC to 80-column or
132-column mode and invert its picture.) However, this program has no effect on
our keyboard; there are apparently at least two models, each with its own set of
commands. On the keyboard supported by Set up, the values are interpreted as
follows:

• Bit 3, if set, disables the keystroke click.
• Bit 5, if set, disables automatic keystroke repetition.
• Bit 7, if set, selects the Yugoslav "QWERTZ" layout, otherwise the American

"QWERTY" is used.

All of these commands require bits 0, 1, 2, 4, and 6 to be set, otherwise the
keyboard's behavior is not modied (but in any case, the state of the LEDs is).

To provide a better user experience, the emulator understands the commands for
the keyboard model assumed by Set up, even though we do not have such a
keyboard. Most applications only read the keyboard (via BDOS functions) and never
send anything to it, so the difference between models is not a major issue.

The Beep routine in the ROM-dumping program shows how to send data to the
keyboard.

The buzzer also produces a very short beep (which sounds more like a click) on each
keystroke, unless this is disabled by software.

When the emulator detects a key being pressed, it translates it into the appropriate
keystroke and remembers it. It then triggers an interrupt (the manual told us which
one) and plays a sound if necessary. The BIOS then responds by reading the serial
port's data port, where the emulator passes it the scancode. If the user keeps the
key pressed for some more time and automatic keystroke repetition is enabled, the
emulator keeps triggering interrupts periodically until the key is released.
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3.8  The mouse

Some applications developed specically for the Partner support a mouse connected
to the serial port. We do not have one, but the source code for the VIGRED program
showed us what protocol it uses.

The program detects and initializes the mouse by sending it a byte with the value 99
and then tries to read 60 bytes. If the ASCII string "LOGI" is found in those 60
bytes, it assumes that the mouse is connected.

The mouse does not send data constantly, but must be polled by sending a byte
with the value 80. The mouse responds with ve bytes:

• The rst byte tells the state of the buttons; bit 4 is the left button, bit 3 is the
middle button, and bit 3 is the right button.

• The second byte contains the low 6 bits of ∆X in its low 6 bits.
• The third byte contains the high 6 bits of ∆X in its low 6 bits (two's complement).
• The fourth and fth bytes are the same, but for ∆Y. The Y coordinate's origin is at

the bottom.

In the emulator, the mouse is implemented as a nite state machine. In the initial
state, it waits for a command. When it receives the value 99, it enters to a state
that returns the ASCII character "L" on the next read, then "O", "G", and "I",
followed by zeros, because we did not know what data should be in the other 56
bytes expected by the software. The mouse then again enters the initial state. In a
similar way, the value 80 causes the ve bytes described earlier to be sent.

3.9  Printing

The emulator can redirect data sent to the serial port into a le. In this way, it is
possible to "print" text les from e.g. the WordStar program.

This is not a perfect solution because most printers that were used with the Partner
also support changing the attributes of the printed text (e.g. the font and its size)
or even graphics. The emulator does not support any of that, but for most text
les, this is not an issue.
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3.10  Mass storage devices

All Partner models have at least one oppy disk drive. The WF/G model also has a
hard disk connected to a Xebec S1410 controller. The ROM supports booting from
both.

Because we wanted the emulator to reach a usable state as soon as possible
(meaning that it could load CP/M and run at least a few applications), and also
because we did not have any information about the oppy disk drive controller, we
chose an alternative approach: instead of emulating these devices, we intercept
calls to disk-related BIOS functions. This is an example of virtualization at the driver
level [13].

CP/M always calls the BIOS through documented entry points, so the emulator
checks the PC value before executing each instruction. If it matches any of the
entry points into BIOS disk-related functions, the emulator performs the requested
operation and returns the RET instruction, which prevents the actual BIOS code
from being executed. The disk-related functions are the following [7]:

• HOME. Sets track 0 as the track to be used for the next disk I/O operation.
• SELDSK. Selects the device to be used for subsequent disk I/O operations.
• SETTRK. Sets the track to be used for the next disk I/O operation.
• SETSEC. Sets the sector to be used for the next disk I/O operation.
• SETDMA. Sets the 16-bit address of the buffer that will be lled with data from

the next sector read or that will be written to the next sector written.
• READ. Reads the sector specied by earlier SETTRK and SETSEC calls from the

device specied by an earlier SELDSK call to the buffer specied by earlier
SETDMA and SETBNK calls.

• WRITE. Writes data from the buffer into the sector; the parameters are the same
as for READ.

• SETBNK. Sets the bank containing the address given to SETDMA.

This method mostly works because CP/M is the only operating system for the
Partner found so far and most applications do not access these devices directly, but
only through CP/M. The most notable exceptions are the WF and DISKETTE
programs, whose purpose is exactly to test the hard disk and its controller, and the
currently inserted oppy disk, respectively, and the FORMAT program, which
formats oppy disks.
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The ROM also accesses these devices directly (as it otherwise cannot begin loading
the operating system), so the emulator also intercepts some of its routines.

Other devices could also be faked with this method, but in the interest of accurate
emulation, we did not use it unless necessary.

3.11  The real-time clock

To provide the operating system with the current date and time, the Partner
contains a real-time clock powered by a battery.

The clock is accessible as a set of registers containing temporal components
(milliseconds, seconds, minutes, and the hour, day, month, and last two digits of
the year) in "packed BCD" format. Each register has its own input/output port
through which it can be read and written at will.

The emulator obtains the date and time from the host operating system. Because
the Partner's BIOS and CP/M do not support dates beyond the year 1999 (due to
bugs, those dates are not displayed properly; this could be patched), the emulator
subtracts a multiple of 28 from the year to make it lower than 2000 (e.g. 2017 –
28 = 1989). The Gregorian calendar repeats every 28 years; for example, July 1,
2017 was a Saturday and July 31, 2017 was a Monday; it was the same in 1989.
(This solution will work until, and including, February 28, 2100, unless the host
operating system has some other limitation.)

The real-time clock also has a small memory used to store user preferences set by
the Set up program. The emulator reads the contents of this memory from a le on
startup (or uses default values) and saves it on exit if it was modied.

If the battery runs out and the memory loses power, its contents become invalid; all
bits are read as ones. Four of those bits are used by the BIOS to remember the
default character set. This value is normally between 0 and 8; when we rst turned
the computer on, it was 15 (binary: 1111), which caused the wrong characters to
be written into AVDC memory; the BIOS does not check whether this value falls into
the allowed interval. Picture 3.4 shows the effect of this bug. The Set up program
thankfully looks correct regardless of the selected character set, so we were able to
x this problem on day 1 by selecting the Yugoslav character set.
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Picture 3.4: Text on the screen after the first boot and after selecting a character set.

3.12  Other devices

There are a few more chips in the Partner that we do not emulate:

• The DMA controller. It is used for transfers between the working memory and the
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oppy disk drive controller or the hard disk controller. Since we do not emulate
the latter, we also do not emulate the former. It is not known whether it has any
other use.

• The CTC. It is used in the same situations as the DMA controller. It could
theoretically also be used by applications for their own needs, but we did not
observe this.

• The parallel port controller (PIO). Our hard disk contains some source code that
sends and receives data through it, but we do not know what devices it was used
for in practice.
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Chapter 4  

Evaluation of the nal product

In this chapter, we will assess the accuracy and correctness of the emulator and list
possible improvements.

4.1  Accuracy

In general, we tried to make the emulator behave as close to an actual Partner as
possible, unless the amount of effort required made that infeasible. From a user's
perspective, applications should behave the same as on an actual Partner even
though the emulator differs in certain details. Picture 4.1 shows the VIGRED
application, which required some more work than others before it ran entirely
correctly.

These details are mostly time-related and are a consequence of the discrepancy
between actual hardware, which runs in parallel, and the emulator, where everything
is done sequentially for simplicity. This is most evident in the emulation of the
AVDC and GDP, where changes in memory and registers only take effect periodically
instead of immediately, because the emulator does not simulate a cathode ray tube
monitor.

The other time-related difference are the various delays, which are also a
consequence of the parallel operation of hardware. The AVDC, GDP, and other
devices do not execute most operations immediately (from the processor's
perspective, "immediately" means faster than the processor can execute the
instruction following the one that caused the operation on the device), but only
after a certain time, and the processor is notied of this either by an interrupt or
through a status register that must be checked periodically. DRAM-type memory
also incurs delays on each read and write and must be refreshed periodically, which
temporarily prevents the processor from accessing it.

In the emulator, all these operations take effect immediately: when the processor
accesses a device, the corresponding function is called to perform the operation,
and only then is code execution resumed. This could be xed, but is not crucial;
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after all, (properly written) software should not depend on such details, since the
documentation for most devices does not even mention the duration of such
delays; the only way to nd the duration is empirically by measuring it.

Picture 4.1: The VIGRED application in the emulator.

4.2  What could be improved

To achieve "perfect" emulation, we would also have to emulate devices that we
currently do not – they were listed in the previous chapter.

The following functionality is also desired:

• Emulation of a graphics tablet. We have source code that communicates with it; it
might be helpful in the same way as the mouse-related code was.

• Emulation of at least one of the printers supported by Iskra Delta's applications.
• Emulation of at least one of the plotters or graphics-capable printers supported by

Iskra Delta's applications.

Some non-crucial features would make using the emulator and exchanging data
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easier, such as:

(Note: these features were later implemented in PartEm 1.5, released in 2021.)

• integration with the host's le system,
• importing les into disk images; currently this has to be done manually with a hex

editor,
• easier exporting of les from disk images,
• copying and pasting text between the emulator and the host.

4.3  The user experience

Because the Partner was not used by many people and their number will not increase
in the future, it makes sense for the emulator to try to mimic an actual Partner in
terms of aesthetics. It does this by using sound recordings of the hard disk,
keyboard, power switch, and reset switch. The picture on the screen also starts out
dim and slowly reaches full brightness, while the sound of the hard disk spinning up
is played.

4.4  Portability

An emulator that runs on only one or a handful of operating systems is not very
useful, as it is then itself in danger of not being able to be easily run in the future.

Portability is achieved by using the C programming language (which can be compiled
practically anywhere, and the language also lends itself well to emulator
development) and the SDL (Simple DirectMedia Layer) library [6]. The latter
provides a consistent interface for working with input and output devices (for
example: reading the keyboard and mouse, playing sound, drawing to the screen) on
several operating systems. The emulator can also be compiled with multiple
compilers for multiple operating systems and architectures.

It can also be compiled with the Emscripten compiler, which translates C code to
JavaScript [12]. Emscripten also implements a large part of the SDL interface. This
way, the emulator can run inside a Web browser on the domain matejhorvat.si, but
this requires much more computing power than if it is compiled to machine code.
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Chapter 5  

Conclusion

At the start of the project, we were not sure that we would be able to produce a
working emulator due to hardware problems (oppy disk drive, serial port) and a
lack of documentation. With some luck and reverse engineering, we got quite far;
from a user's perspective, the emulator behaves almost identically as an actual
Partner.

Of course, there is room for improvement; as mentioned in the previous chapter,
some devices are not emulated at all and applications only work because they do
not access them directly or not at all, and some devices only have the minimum
amount of functionality implemented for most applications to run without issues.

The project took about four months. The emulator itself was written in
approximately one month, but the development took turns with research and
reverse engineering. It is made up of just over 3500 lines of code. This does not
include the Zymosis and SDL libraries.

As part of the project, an additional 1000 lines of code were written in various
languages. This includes e.g. the hard disk imaging program and ROM-dumping
program, decoding these dumps, and various experimental code used to reverse
engineer the hardware.

The results are available on the Web site matejhorvat.si.

With a similar approach, it should also be possible to emulate other Slovenian
computers, such as the Dialog and Triglav.

(Note: since this thesis was rst published, work on them has already started.)
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